Machine Learning Engineer

  • Afresh Technologies
  • San Francisco, CA
  • Jun 05, 2021

Job Description

Afresh is on a mission to reduce food waste and increase access to nutritious food globally by transforming the fresh food supply chain. Our solution is currently deployed in hundreds of grocery stores across the United States and is on track to reduce 30 million pounds of food waste per year with our existing customers alone. By 2021, we're aiming to reduce food waste by a quarter billion pounds per year.
The Modeling and Optimization team builds Afresh's core replenishment technology. Our models are directly responsible for ordering millions of dollars of fresh inventory across the world every day; fresh food ordering is an extremely complex high-dimensional decision-making problem! We deal with decaying product, uncertain shelf lives, varying consumer demand, stochastic arrival times, extreme weather events, and tight performance constraints (to name a few). We tackle these problems with a mix of machine learning, large-scale simulation, and optimization technologies.
You will be working on pushing the boundaries of our system's performance on product categories we're already live in, as well as expanding our product to entirely new categories. You will be responsible for implementing new systems end-to-end, including working with product teams to define the business needs of a solution, reviewing research papers and implementing novel ideas, and scaling up experiments to generate predictions and decisions on millions of items every day. Your work will be visible from day one, will make a substantial impact on decreasing food waste, and will lead to fresher, healthier produce for millions of people across the world.

What you will do:

  • In your first 3 months, you will experiment with new features, train and validate new models, and push updates to all of our customers. You will build a strong understanding of perishable inventory control, time series forecasting, and simulation techniques.
  • By the end of your first 6 months, you will have proposed, implemented, and rigorously tested algorithmic or engineering improvements to our core models, featurization, or automatic training and experimentation systems.
  • By the end of your first year, you will have implemented new modeling techniques, expanded our product offering to new categories with novel algorithms, and scaled your solution to our entire customer base.
  • We need to make optimal ordering decisions for millions of items for weeks at a time, and our system must be fault-tolerant to an extreme. Our partners rely on our system to order millions of dollars of inventory every day, and so your code must be rigorously validated, tested, and bug-proof. This is not an analytics team.

What skills and experience do you need?

  • 4+ years of professional software development experience with advanced machine learning or statistical and numerical optimization methods. You have repeatedly and successfully taken complex research ideas from experiment to production, and you write high-quality and high-performance code that lives outside of experiments.
  • Familiarity with forecasting techniques, time series analysis, and large-scale stochastic optimization is a plus.
  • A graduate degree in operations research, computer science, electrical engineering, statistics, or similar quantitative field is a plus.
Afresh is the first A.I.-powered fresh food optimization platform for grocery chains. We have partnered with several large grocers representing hundreds of stores and >$10B in revenue. Our cutting-edge AI research has been published in top journals (e.g., ICML). We’re backed by some of the top investors in grocery and tech including Innovation Endeavors (former Google CEO Eric Schmidt’s firm), James McCann's (former CEO at Ahold USA, Tesco, Carrefour) Food Retail Ventures, Baseline Ventures (first money in Stitch Fix, SoFi, Heroku, Instagram), Maersk Growth, and Impact Engine.
We are building a vibrant, diverse, and inclusive team that embodies our company’s values: proactivity, kindness, candor, and humility. We aspire to continually grow as individuals and as an organization to live these values and realize our mission. We earnestly believe that Afresh represents a one-of-a-kind opportunity to have massive social impact at scale by employing novel technology—and to have a ton of fun along the way.
Afresh provides equal employment opportunities (EEO) to all employees and applicants for employment without regard to race, color, religion, sex, national origin, age, disability, genetics, sexual orientation, gender identity/expression, marital status, pregnancy or related condition, or any other basis protected by law.

Organization Type


Organization Size



Climate Risk, Food & Agriculture, Pollution & Waste Reduction

Drawdown solutions

Reduced Food Waste